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Laser: Theory and Modern Applications
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to homework No. 3

Attention: for some exercises the given solutions are not the same as found on the exercise
sheet. The main calculation remains the same.

1 Fabry Perot Etalon

1. Finesse F ,
νFSR

δν
The resonance frequencies of a Fabry-Perot resonator are where φ

2 = m · π:

φ = 2 · k · d = 2 · ω

c
n · d =

4πνnd
c

Resonance frequencies νm =
mc
2nd

, m ∈N

Resonance frequencies ωm =
mcπ

nd
, m ∈N

Free spectral range FSR = νFSR = νm+1 − νm =
c

2nd
Let’s see just one resonance frequency ν0

Full width at half maximum δν = 2ν1
2
, where ν1

2
is the frequency for which T = 50%

Transmission coefficient T :

T =
IT

Iin
=

1
1 + F sin2(φ/2)

=
1
2

=⇒ F sin2(φ/2) = 1 =⇒ sin2(φ/2) =
1
F
=⇒ sin(φ/2) =

√
1
F

F >> 1 =⇒ sin x ' x =⇒ φ/2 =

√
1
F
=

1− R
2
√

R
=⇒ φ =

1− R√
R

=⇒
4πν1

2
nd

c
=

1− R√
R

=⇒ δν = 2ν1
2
=

1− R√
R

c
2πnd

Finesse F ,
νFSR

δν
=

c
2nd
·
√

R
1− R

2πnd
c

=
π
√

R
1− R

1
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2. Example:
n = 1.44 =⇒ R = 0.33

νFSR =
c

2nd
=

3× 108

2 · 1.44 · 1× 10−3 = 104.1 GHz

3. If no mirror absorption: T = 1− R. With absorption: T = 1− R− α

Ir = RIin, It = TIin, Iabs = αIin, Iin = Iabs + Ir + It

Er =
√

REin, Et =
√

TEin

Assume two mirror are the same:

T =
It

Ii
=

∣∣∣∣Et

Ei

∣∣∣∣2 =
EtE∗t
EiE∗i

=
(
√

T1T2e−ikl)(
√

T1T2eikl)

(1−
√

R1R2e−i2kl)(1−
√

R1R2ei2kl)

=
T2

1− Rei2kl − Re−i2kl + R2 ←− cos θ =
eiθ + e−iθ

2

=
T2

1− 2R cos(2kl) + R2 ←− 2 sin2( θ
2 ) = 1− cos(θ)

=
T2

1− 2R(1− 2 sin2(kl)) + R2

=
T2

(1− R)2 + 4R sin2(kl)
←− F =

4R
(1− R)2

=
T2/(1− R)2

1 + F sin2(kl)
←− T = 1− R− α

=
(1− R− α)2

(1− R)2
1

1 + F sin2(kl)

4. In order to observe resonances with the peak transmission > 0.5:

(1− R− α)2

(1− R)2 > 0.5⇒ 2(1− α− R)2 > (1− R)2

⇒ 2(1− α)2 − 4(1− α)R + 2R2 > 1− 2R + R2

⇒ R2 + (−4(1− α) + 2)R + 2(1− α)2 − 1 > 0

⇒ R2 + (4α− 2)R + (1− 4α + 2α2) > 0

R1,2 =
−(4α− 2)±

√
(4α− 2)2 − 4(1− 4α + 2α2)

2

=
−(4α− 2)± 2

√
2α

2
= 1− 2α±

√
2α

2

Then, the minimum reflectivity R necessary to have resonant transmission > 0.5, is 

𝑅 → 1 − 2𝛼 − √2𝛼 

Because, otherwise will produces a negative transmission which is not physical. 
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2 Input-output relations for an optical resonator

1. Input field is Eine−iωt, intracavity field is Ee−iωt, spacing between the mirrors l

Ee−iωt = t1Eine−iωt + t1r1r2Eine−iωte−i2kl + t1r2
1r2

2Eine−iωte−i4kl + · · ·

= t1Eine−iωt ·
[
1 + r1r2e−i2kl + r2

1r2
2e−i4kl + · · ·

]
= t1Eine−iωt ·

[
1

1− r1r2e−i2kl

]
=

t1

1− r1r2e−iφ Eine−iωt

=⇒ E =
t1

1− r1r2e−iφ Ein

where
φ = 2kl = 2

ω

c
nl

2. We know that at resonance

φ = m · 2π = 2
ωm

c
nl =⇒ m =

ωmnl
πc

Let’s take a detuning ωdet close to cavity resonance frequencyωm, ∆ = ωdet −ωm

φ = 2
ωdet

c
nl = 2

ωm + ∆
c

nl = 2
ωm

c
nl + 2

∆
c

nl = m · 2π + δφ

=⇒ δφ = 2
ωdet −ωm

c
nl

use 1:

e−iφ = e−i2πme−iδφ = e−iδφ
(δφ<<1)
' 1− iδφ

use 2:
δφ =

2nl
c
(ωdet −ωm) =

2nl
c
· ∆

use 3:

R + T = 1 −→ r2 + t2 = 1 −→ r =
√

1− t2 −→ r1r2 =
√
(1− t2

1)(1− t2
2)

t1

r1r2
=

√
t2
1

1− t2
1 − t2

2 −�
�t2

1t2
2

(t<<1)
'

√
t2
1

1− t2
1 − t2

2
' t1

1− r1r2

r1r2
'

1−
√

1− t2
1 − t2

2√
1− t2

1 − t2
2

' 1−
√

1− t2
1 − t2

2

(
√

1+x=1+ x
2 )' 1−

[
1− 1

2
(t2

1 + t2
2)

]
=

1
2
(t2

1 + t2
2)

3



Prof. T.J. Kippenberg 
Prof. C. Moser Fall 

Term 2022

Then we can derive:

t1

1− r1r2e−iφ =
t1

1− r1r2 + ir1r2δφ
⇐⇒

=
t1

(1− r1r2) + ir1r2
2nl

c ∆

=

t1
r1r2

c
2nl

(1−r1r2)
r1r2

c
2nl + i∆

=

t1
r1r2

c
2nl

(1−r1r2)
r1r2

c
2nl + i∆

·

√
2nl

c√
2nl

c

=

t1
r1r2

√ c
2nl

(1−r1r2)
r1r2

c
2nl + i∆

· 1√
2nl

c

'

√
t2
1

c
2nl

1
2 (t

2
1 + t2

2)
c

2nl + i∆
· 1√

2nl
c

=

√
κ1

1
2 (κ1 + κ2) + i∆

· 1√
2nl

c

=⇒ κ1 =
ct2

1
2nl

, κ2 =
ct2

2
2nl

, κ = κ1 + κ2 =
c(t2

1 + t2
2)

2nl

3. In class we saw photon life time τp

τp =
2nl

c(1− R1R2)

So the κ can be related to τp

κ =
c(t2

1 + t2
2)

2nl
=

c(1− R1 + 1− R2)

2nl
' c(1− R1R2)

2nl
=

1
τp

Assumptions are as shown in the class:

R1 ≈ 1, R2 ≈ 1 =⇒T1 · T2 ≈ 0
=(1− R1)(1− R2) ≈ 0
=1− R1 − R2 + R1R2 ≈ 0

=⇒1− R1 − R2 ≈ −R1R2

=⇒2− R1 − R2 ≈ 1− R1R2

4.
Ein(t) =

∫ ∞

−∞
Ein[Ω]e−iΩtdΩ

a(t) =
√

2dn/cE(t)∫ ∞

−∞
(i(∆−Ω) + κ/2)a[Ω]e−iΩtdΩ =

√
κ1

∫ ∞

−∞
Ein[Ω]e−iΩtdΩ∫ ∞

−∞
iΩa[Ω]e−iΩtdΩ = − d

dt
a(t)

4
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(i∆ + κ/2)a(t) +
d
dt

a(t) =
√

κ1Ein(t)

d
dt

a(t) = −(i∆ + κ/2)a(t) +
√

κ1Ein(t)

3 Multimode laser diodes : cavity length and Fabry-Perot analyzer

1. The mode spacing of a resonator of length llaser is

∆ν =
c

2nllaser
(1)

From the graph it can be seen

∆λ =
0.4nm

7
= 0.0057nm (2)

In order to be able to use equation 1, we need to convert this wavelength bandwidth ∆λ
into a frequency bandwidth ∆ν. It is incorrect to apply the relationship ν = c

λ to wavelength
or frequency intervals (i.e. ∆ν = c

∆λ does not hold). The correct formula for intervals can be
found by differentiation:

ν =
c
λ
⇒ δν = − c

λ2 dλ

As long as the intervals remain small, the differentials can be replaced by finite differences
(dλ =⇒ ∆λ,dν =⇒ ∆ν). By dropping the minus sign (it indicates a change in the direction of
the interval - this is not relevant here), and by substituting ν = c

λ , we can obtain a formula that
is easy to remember :

∆ν

ν
=

∆λ

λ

Starting from this formula, we can carry out the conversion as follows:

∆ν

ν
=

∆λ

λ
=⇒ ∆ν =

∆λ

λ
ν =

∆λ

λ2 c
λ=403nm∼= 105GHz

From equation 1 :

llaser =
c

2n∆ν
= 550µm

2. Etalon Design The free spectral range of the Fabry-Perot is

∆νFSR =
c

2nletalon
, ∆νrange ≥ 1nm

∆νFSR = ∆νrange =
∆λ

λ2 c ≥ (1 · 10−9)(3 · 108)

(405 · 10−9)2

5



Prof. T.J. Kippenberg 
Prof. C. Moser Fall 

Term 2022

=⇒ letalon ≤
c

2n · 1875GHz
n=1
= 82µm

The resolution of the Fabry-Perot etalon is taken as 10% of 105 GHz

∆νFWHMetalon = 10.5GHz

This results in a required resonator finesse F

F =
∆νFSR

∆νFWHM
=

1829GHz
10.5GHz

= 178

The relationship between finesse F and mirror reflectivity can be described as

F =
π
√

R
1− R

=⇒ F 2R2 − R(2F 2 + π2) +F 2 = 0

R ∼=
2F 2 + π2 ± 2Fπ

2F 2

Since only (-) gives a physical value for R

R = 1 +
π2

2F 2 −
π

F
=⇒ R = 98.26%

letalon = 82µm

n = 1(in air)

3. Coherence length

lcoh =
c

n∆ν
=

(3 · 108m/s)
(2.6)(736 · 109Hz)

= 156µm

4 Four Level System

1. Steady State

0 = −Γ10N1 + Γ21N2 =⇒ N1 =
Γ21

Γ10
· N2

0 = PN0 − Γ21N2 =⇒ N2 =
P

Γ21
· N0

0 = −PN0 + Γ10N1 =⇒ N0 =
Γ10

P
· N1

from this follows

6
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N2 =
Γ10

Γ21
· N1 (3)

N0 =
Γ10

P
· N1 (4)

NT = N0 + N1 + N2 (5)

from equation (5) we get the following:

Γ10

P
· N1 + N1 +

Γ10

Γ21
· N1 = NT

N1

(Γ10

P
+ 1 +

Γ10

Γ21

)
= NT

N1

(Γ10Γ21 + PΓ21 + PΓ10

PΓ21

)
= NT

N1 =
PΓ21

Γ10Γ21 + P(Γ21 + Γ10)
NT

(3) =⇒ N2 =
PΓ21

Γ10Γ21 + P(Γ21 + Γ10)
NT

(4) =⇒ N0 =
Γ10Γ21

Γ10Γ21 + P(Γ21 + Γ10)
NT

subtracting N1 from N2 yields the solution:

N2 − N1 =
P(Γ10 − Γ21)

Γ10Γ21 + P(Γ21 + Γ10)
NT

2. Ratio between three and four level system Three level system:

∆NT = N2 − N1 =
P− Γ21

P + Γ21
NT

(P + Γ21)∆NT = (P− Γ21)NT

P∆NT + Γ21∆NT = PNT − Γ21NT

=⇒ P(∆NT − NT) = −Γ21(∆NT + NT)

(P)3level threshold =
Γ21(∆NT + NT)

NT − ∆NT

Four level system:

∆NT =
P(Γ10 − Γ21)

Γ10Γ21 + P(Γ21 + Γ10)
NT

Γ10Γ21∆NT + P∆NT(Γ21 + Γ10) = P(Γ10 − Γ21)NT

P[(Γ10 − Γ21)NT − ∆NT(Γ21 + Γ10)] = Γ10Γ21∆NT

(P)4level threshold =
Γ10Γ21∆NT

(Γ10 − Γ21)NT − ∆NT(Γ21 + Γ10)

we will assume Γ10 >> Γ21 and P

7
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(P)4level threshold
∼=

Γ10Γ21∆NT

Γ10NT − Γ10∆NT
=

Γ21∆NT

NT − ∆NT

This results in

(P)4level threshold

(P)3level threshold
=

Γ21∆NT

NT − ∆NT

NT − ∆NT

Γ21(∆NT + NT)
=

∆NT

∆NT + NT

6 Threshold of Nd :YAG, Ruby and He-Ne laser

1. Population inversion threshold

g(ν) = ∆Nσ(ν) = ∆N
λ2 A12

8π
S(ν)

gt = −
1

2L
ln(r1r2) + a ≈ 1

2L
(1− r1r2) + a

∆N =
gt8π

λ2 A12S(ν)

Doppler:s(ν0) =
1

δ < nuD

√
4ln2

π

He-Ne:

gt =
1

2 · 30
· (1− 0.988 · 0.98) +

0.002
2 · 30

= 3.99 · 10−4cm−1

∆NHe−Ne =
3.66 · 10−2 · 8 · π · 1500 · 106

(0.6328 · 10−6)2 · 1.4 · 106 ·
√

4ln2
π

= 2.7 · 1015 atoms
m3 = 2.7 · 109 atoms

cm3

Nd-Yag:

gt =
1

2 · 10
· (1− 1 · 0.96) +

0.03
2 · 10

= 3.5 · 10−3cm−1

σYAG∆N = gt

∆NYAG = 3.5 · 10−3cm−1 · 1
3 · 10−19 cm−2 = 1.16 · 1016 atoms

cm3

Ruby:

gt =
1

2 · 5 · (1− 1 · 0.96) +
0.03
2 · 5 = 7 · 10−3cm−1

∆NRuby =
gt

σRuby
=

7 · 10−3cm−1

2.7 · 10−20cm2 = 2.6 · 1017 atoms
cm3

=⇒The population inversion for gas laser (He-Ne) is considerable lower than for solid state
lasers. =⇒The Nd :Yag inversion population at threshold is one order of magnitude lower than
for Ruby.

8
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2. 3-level power threshold ( P
V

)
=

1
2

hν31NTΓ21

Ruby:

λ = 505nm

=⇒ ν31 =
c
λ
=

3 · 108

505 · 10−9 = 5.94 · 1014

Γ21 = 500
1
s

(see table)

NCr = 2.3 · 1019 atoms
cm3

For a more detailed calculation of NT,Cr see the appendix at the end of the solution.

h = 6.62 · 10−34[J · s]

ν31 = 5.94 · 1014[
1
s
]

hν31 = 3.93 · 10−19[J]

( P
V

)
=

1
2

3.93 · 10−19 · 500 · 2.3 · 1019[
W

cm3 ] = 2260
W

cm3

VRuby,Red = πr2L = π(0.2)25 = 0.63cm3

=⇒ P ∼= 1kW

3. 4-level power threshold ( P
V

)
= hν30∆NTΓ21

hν30 = 1.55eV = 2.48 · 10−19 J

∆NT = 1.16 · 1016 atoms
cm3

Γ21 = 4406

( P
V

)
= 2.48 · 10−19 · 1.16 · 1016 · 4.4 · 103 = 12.65

W
cm3

V = π(0.2)2 · 10 = 1.25cm3

=⇒ P = 15.9W

9
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Appendix - Density of Chromium atoms in Ruby Ruby : Al2O3 =⇒Atomic mass: 2Al +
3O = 101.96g/mol(u)

Chromium : 51.99g/mol(u)

Mass of Cr
Mass of Al2O3

=
NCr[

atoms
cm3 ]51.99[ u

atom ]V[cm3]

NAl2O3 [
atoms
cm3 ]101.96[ u

atom ]V[cm3]

NCr[
atoms
cm3 ] = 0.05%NAl2O3

atoms
cm3

101.96
51.99

Density of Ruby (Corundum) : 4.05g/cm3. Number of molecules of Ruby : 2.391023 molecules.

4.05[g]
101.96(unified atomic mass) · 1.66 · 10−24[g](mass of 1/12 C)

= 2.39 · 1023molecules

=⇒ NCr = 0.05%
101.96
51.99

2.39 · 1023 = 2.3 109 atoms
cm3

7 Cavity frequency pulling effect [Reproduced from Milonni Chapter 5] We have mostly
ignored the effect of refractive index of the gain medium on laser oscillation, except insofar as
it enters into the equations for gain and threshold. However, it turns out that the refractive
index of the gain medium actually determines to some extent the laser oscillation frequency.
We will now examine how this occurs. A laser will oscillate at a frequency n such that the
optical length of the cavity is an integral number of half wavelengths. That is, L = mλ/2, or
ν = mc/2L = νm. This applies to the bare-cavity case i which the gain and refractive index of
the active medium are not taken into account. In general, however, the effective optical length
of a medium is not just its physical length and its refractive index n(ν). To account for the
index of refraction of the active medium, therefore, we divide the cavity length into two parts
L = l + (L− l), where l is the length of the gain cell and remainder is empty cavity. The optical
length of the gain cell is n(ν)l. Thus

ν =
mc/2

n(ν)l + (L− l)
(6)

or

l
L
[n(ν)− 1]ν = νm − ν (7)

Now let us assume that n(ν) is determined primarily by the single nearly resonant, las-
ing atomic transition. In other words, we will assume that n(ν) is essentially the resonant (or
?anomalous?) refractive index. Since other transitions contributing to the refractive index will
usually be off resonance by many transition linewidths, this will often be an excellent approx-
imation. In case of an absorbing medium the resonant refractive index is simply related to the
absorption coefficient and the same applies to an amplifying (gain) medium, simply by replac-
ing the absorption coefficient by the negative of the gain coefficient, So, for a homogeneously
broadened gain medium, we have

n(ν)− 1 = −λ21

4π

ν21 − ν

δν21
g(ν) (8)

where δν21 is the homogeneous linewidth (HWHM). This leads to

ν =
ν21[cg(ν)l/4π] + νmδν21

[cg(ν)l/4π] + ν21
(9)

10
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And for the cavity bandwidth (δνc =
cg(ν)l
4πL ) we can write

δνc(ν− ν21) = δν21(νm − ν) (10)

This shows that the actual frequency of laser is therefore pulled toward the center of the
gain profile and away from the bare cavity frequency. Rewriting of the cavity frequency we
can get

ν =
ν21δνc/δν21 + νm

1 + δνc/δν21
≈
(

ν21
δνc

δν21
+ νm

)(
1− δνc

δν21

)
≈ νm + (ν21 − νm)

δνc

δν21
(11)

Which is the homogeneous broadening.
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